Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Randomized algorithms exploit stochasticity to reduce computational complexity. One important example is random feature regression (RFR) that accelerates Gaussian process regression (GPR). RFR approximates an unknown function with a random neural network whose hidden weights and biases are sampled from a probability distribution. Only the final output layer is fit to data. In randomized algorithms like RFR, the hyperparameters that characterize the sampling distribution greatly impact performance, yet are not directly accessible from samples. This makes optimization of hyperparameters via standard (gradient-based) optimization tools inapplicable. Inspired by Bayesian ideas from GPR, this paper introduces a random objective function that is tailored for hyperparameter tuning of vector-valued random features. The objective is minimized with ensemble Kalman inversion (EKI). EKI is a gradient-free particle-based optimizer that is scalable to high-dimensions and robust to randomness in objective functions. A numerical study showcases the new black-box methodology to learn hyperparameter distributions in several problems that are sensitive to the hyperparameter selection: two global sensitivity analyses, integrating a chaotic dynamical system, and solving a Bayesian inverse problem from atmospheric dynamics. The success of the proposed EKI-based algorithm for RFR suggests its potential for automated optimization of hyperparameters arising in other randomized algorithms.more » « lessFree, publicly-accessible full text available February 25, 2026
-
Supervised operator learning centers on the use of training data, in the form of input-output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as apowerful tool to complement traditional scientific computing, which may often be framedin terms of operators mapping between spaces of functions. Building on the classical ran-dom features methodology for scalar regression, this paper introduces the function-valuedrandom features method. This leads to a supervised operator learning architecture thatis practical for nonlinear problems yet is structured enough to facilitate efficient trainingthrough the optimization of a convex, quadratic cost. Due to the quadratic structure, thetrained model is equipped with convergence guarantees and error and complexity bounds,properties that are not readily available for most other operator learning architectures. Atits core, the proposed approach builds a linear combination of random operators. Thisturns out to be a low-rank approximation of an operator-valued kernel ridge regression al-gorithm, and hence the method also has strong connections to Gaussian process regression.The paper designs function-valued random features that are tailored to the structure oftwo nonlinear operator learning benchmark problems arising from parametric partial differ-ential equations. Numerical results demonstrate the scalability, discretization invariance,and transferability of the function-valued random features method.more » « less
An official website of the United States government
